## Math Virtual Learning

## Algebra 2/Honors Algebra 2

April 20, 2020

## Lesson: April 20, 2020

## Objective/Learning Target:

Students will be able to simplify rational expressions.

## Let's Get Started:

Get out a sheet of paper and factor the following expression

$$
x^{2}+5 x-36
$$

Clink here for a hint.
Click here to check your answer.

Today you will be learning to simplify rational expressions that look like $\frac{x^{2}+5 x-36}{x^{2}-6 x+8}$. You will use your factoring skills from above.

## Watch Video: Simplifying Rational Expressions

As you watch the video for simplifying rational expressions, take notes over the example.

## Take Some Notes: Simplifying Rational Expressions

A rational expression is in simplified form if its numerator and denominator have no common factors (other than $\pm 1$ ). To simplify a rational expression, apply the

## KEY CONCEPT

## Simplifying Rational Expressions

Let $a, b$, and $c$ be expressions with $b \neq 0$ and $c \neq 0$. Then the following property applies.

```
Property }\quad\frac{ac}{bc}=\frac{a}{b
```

Divide out the common factor $c$.
Examples

$$
\frac{15}{65}=\frac{3 \cdot 5}{13 \cdot 5}=\frac{3}{13}
$$

Divide out the common factor 5.

$$
\frac{4(x+3)}{(x-5)(x+3)}=\frac{4}{x-5} \quad \text { Divide out the common factor } x+3
$$

Simplifying a rational expression usually requires two steps. First, factor the numerator and denominator. Then, divide out any factors that are common to both the numerator and denominator. Here is an example:

$$
\frac{x^{2}+7 x}{x^{2}}=\frac{x(x+7)}{x \cdot x}=\frac{x+7}{x}
$$

Notice that you can divide out common factors in the second expression above. However, you cannot divide out like terms in the third expression.

## EXAMPLE 1 Simplify a rational expression

$$
\begin{aligned}
& \text { Simplify: } \frac{\left(x^{2}-2 x-15\right)}{\left(x^{2}-9\right)} \\
& \begin{array}{rlr}
\frac{x^{2}-2 x-15}{x^{2}-9} & =\frac{(x+3)(x-5)}{(x+3)(x-3)} \\
& =\frac{(x+3)(x-5)}{(x+3)(x-3)} & \text { Factor pumerator and denominato } \\
& =\frac{x-5}{x-3} & \text { Simple out common factor. }
\end{array}
\end{aligned}
$$

## Guided Practice

## Go to this website: Simplify Rational Expressions

Review and solve the problem on Simplifying Rational Expressions.
Always start by factoring the numerator and denominator. Next cancel out in common factors. Write your answer in simplified form.

Try to get at least 5 correct before moving on.

## Simplify Rational Expressions Practice:

On the same sheet of paper, simplify the following practice problems.

1. $\frac{x^{2}+5 x+4}{x+4}$
2. $\frac{x^{2}+12 x+32}{x+8}$
3. $\frac{x-3}{x^{2}-8 x+15}$
4. $\frac{x-4}{x^{2}+x-20}$

$$
\text { 5. } \frac{x^{2}-8 x-9}{x^{2}-13 x+36}
$$

$$
\text { 6. } \frac{x^{2}+7 x+12}{x^{2}-16}
$$

## Answer Key:

1. $\frac{(x+4)(x+1)}{x+4}=x+1$

Once you have completed the problems, check your answers here.
2. $\frac{(x+8)(x+4)}{x+8}=x+4$
3. $\frac{x-3}{(x-3)(x-5)}=\frac{1}{x-5}$
4. $\frac{x-4}{(x+5)(x-4)}=\frac{1}{x+5}$
5. $\frac{(x-9)(x+1)}{(x-9)(x-4)}=\frac{x+1}{x-4}$
6. $\frac{(x+3)(x+4)}{(x-4)(x+4)}=\frac{x+3}{x-4}$

## Additional Practice:

Click on the links below to get additional practice and to check your understanding!

Simplify Rational Expressions (part 1) - video Simplify Rational Expressions (part 2) - video Simplify Rational Expressions (part 3) - video<br>Simplifying Rational Expressions Practice - worksheet and answers

